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Abstract. We have examined experimentally the motional spectrum of an electron cloud confined in a
Penning trap. When the axial oscillation is excited by a radio frequency field the resonance exhibits a double
structure. Both components depend differently on the number of trapped electrons and have different shape
and width. We conclude that one of them corresponds to the excitation of the individual electrons while
the other is the center-of-mass mode of the cloud. The threshold behaviour of the center-of-mass resonance
suggests that it is a parametric instability of a Mathieu type equation of motion.

PACS. 52.27.Jt Nonneutral plasmas – 82.80.Qx Ion cyclotron resonance mass spectrometry

1 Introduction

A cloud of charged particles confined by electro-magnetic
fields can serve for high precision atomic and nuclear spec-
troscopy [1,2], for collision studies [3], mass spectrome-
try [4] or quantum optics experiments [5]. It can also be
considered as excellent microlaboratory for the investiga-
tion of nonlinear dynamics [6]. It is of particular interest
to study the properties of a cloud of trapped charged par-
ticles when it is considered as a charged single-component
plasma [7]. Recent investigations have concentrated on the
investigation of laser cooled ionic plasmas which form a
spheroid of uniform density [8]. The strong coupling be-
tween the ions at low temperatures leads to crystalline
orders which can be imaged using suitable detection tech-
niques [9]. The electrostatic modes of such a plasma can
be calculated analytically [10,11]. A cold fluid theory [12]
predicts the frequencies of plasma modes which have been
observed experimentally on a cloud of laser cooled Be+

ions [8,13].
Work on trapped electron plasmas deals with higher

temperatures and low densities as no laser cooling can be
employed. Tinkle et al. [14] measured the dependence of
plasma mode frequencies on aspect ratio and temperature.
Weimer et al. [15] found a way to increase the plasma
density of the electrons by magnetron sideband cooling
technique [16]. Using a theoretical model [12] they could
determine density, aspect ratio, and size of the electron
plasma.

a Present address: Dept. of Physics, Rampurhat College,
Rampurhat, Birbhum, West Bengal, India.

b e-mail: werth@mail.uni-mainz.de
or e-mail: werth@dipmza.physik.uni-mainz.de

In the work reported here we have performed measure-
ments on the axial mode of trapped electrons in a Penning
trap at high temperatures in order to confirm and investi-
gate in more detail earlier reports on oscillations of an “an-
nealed” electron cloud [17]. They were triggered by similar
observations on a hot ion cloud in a radio-frequency trap
where “collective” and “non-collective” axial oscillations
could be distinguished [18].

2 Experiment
Our experiments are carried out in a Penning trap [16,19]
with hyperbolic shaped electrode surfaces. We define the
axis of symmetry as z-axis. The potential inside the trap
in the absence of particles is the well-known quadrupole
potential

φ =
V

r2
0

(
r2 − 2z2

)
(1)

r0 is the radius of the ring electrode. The quadratic depen-
dence of the potential on the distance from the trap center
ensures a linear dependence of the forces acted upon the
charges particles by the electric field. A negative dc volt-
age at the endcap electrodes leads to axial confinement of
electrons. Radial confinement is achieved by the superpo-
sition of a magnetic field in axial direction.

For a single electron with charge e inside the trap the
equation of motion can easily be written down:

mẍ + eẏB +
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The solution of this set of equations are three harmonic
oscillations with frequencies
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ωc = (e/m)B is the free electrons cyclotron frequency.
ω′c is called the perturbed cyclotron frequency and ωm the
magnetron frequency. When we confine not a single parti-
cle but many electrons the interacting Coulomb potential
between the electrons has to be added to the confining
quadrupole potential. Then the forces are no longer lin-
ear and the corresponding equations of motions can not
be solved analytically any more. When we average over
the individual electrons oscillation we can write the to-
tal potential in a series expansion in spherical harmonics
P (cos θ):

Φ =
∞∑
n=0

cn

(
r

r0

)n
Pn(cos θ). (4)

The coefficients cn denote the strength of the perturbing
potentials. For n = 2 we have the unperturbed quadrupole
potential.

The existence of higher order contributions to the po-
tential has a number of consequences for the behaviour of
the trapped particles:

(a) different degrees of freedom can not be separated any
more as in equation (2) but mixed terms in all co-
ordinates appear in the equations of motion leading
to coupling between the radial and axial modes of
oscillation. As a consequence we have not only the
frequencies ω′c, ωm and ωz appearing in the motional
spectrum but also linear combinations of them;

(b) the motion can not be described as harmonic oscilla-
tions but contains anharmonicities. Excitation of the
motional resonances by an external radio-frequency
field yields asymmetric line shapes, depending on the
size of the coefficients cn;

(c) coupling between the coordinates at higher order per-
turbations leads to energy transfer between the differ-
ent degrees of freedom, a process which can contribute
to electron loss from the trap.

In this paper we investigate experimentally the mo-
tional spectrum of electrons with a view to examining the
predictions in (a) and (b). The observation and discussion
of instabilities in the electrons motion will be described in
detail in a following paper.

Our trap (Fig. 1) has a ring radius of r0 = 2 cm.
It was used previously in laser spectroscopic experiments
and therefore required holes in the ring electrode and slits
in the lower endcap. The magnetic field in the z-direction,
produced by two coils of 60 cm diameter in approximate
Helmholtz configuration, can be varied between 0 and

Fig. 1. Penning trap electrodes.

Fig. 2. Sequence of trapping voltages. When the electrons
axial frequency coincides with the resonance frequency of a
tank circuit, a detection signal is observed. When the ramp
voltage changes sign the trap is emptied.

10 mT. Electrons are injected into the trap from a hot
tungsten wire just above the upper endcap electrode by
a positive electric pulse of 100 V amplitude and typically
10 ms length, applied to the filament. While the endcap
electrodes are held at dc ground potential, a constant pos-
itive storage voltage is applied to the ring electrode for a
preset time. This time could be varied between 10 ms to
virtually infinitely. This is followed by a ramp. Figure 2
shows the timing of the voltages.

For detection of trapped electrons we apply a tank
circuit consisting of an inductance and a capacitance in
parallel to an endcap electrode. It is weakly excited at its
resonance frequency ωLC (20 MHz). When the trapping
voltage V is ramped down to a negative value the electrons
axial frequency ωz changes according to equation (3). For
a particular value of the ramped trapping voltage it be-
comes coincident with ωLC, leading to an energy transfer
from the circuit to the electrons. The corresponding damp-
ing of the circuit is detected as a drop in the measured
voltage across the endcaps. After rectification, we obtain
a signal whose amplitude is proportional to the number of
trapped trapped electrons. Figure 3 shows an example of
a detection signal. It is digitized and further handled by a
personal computer. The ramp voltage is lowered to a neg-
ative value to assure that all electrons leave the trap after
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Fig. 3. Measured signal example.
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Fig. 4. Motional spectra for different rf-field amplitudes.

being detected. Then a new cycle starts with a completely
empty trap.

3 Motional resonances

The motional resonances are excited by sweeping the fre-
quency of an externally applied rf-field. We used different
ways to apply this field to the trap: (1) adding it to the dc
potential, which results in a quadrupolar field geometry,
(2) applying it between the two endcaps giving a dipole
excitation, or (3) using an external antenna. The ampli-
tude of the different motional resonances varied somewhat
in different excitation modes but it had no influence of the
particular observations of the axial resonances which are
discussed below. Resonant excitation was detected as min-
ima in the number of trapped electrons, as some of them
absorb enough energy to leave the trap. Figure 4 shows
such spectra taken at different amplitudes of the rf-field.
A number of resonances are visible which appear, as ex-
pected, not only at the fundamental frequencies ω′c, ωm

and ωz (Eq. (3)) but also at linear combinations of these
frequencies.

Fig. 5. Measured frequencies at different trap voltages.

Fig. 6. Resonance at 2ωz, showing two components. The asym-
metric low frequency component has been modeled by numer-
ical solution of the equation of motion assuming an octupole
contribution to the trapping potential of strength c4 = 10−3

(dashed line).

The identification of the different resonances is by their
different dependence on the trapping voltage, when the
magnetic field is constant. Thus the magnetron frequency
ωm varies as V , whereas ωz varies as V 1/2. ω′c shows a
small linear dependence on V . However the sideband ω′c +
ωm = ωc, the free electron cyclotron frequency, should
show no dependence on V . Figure 5 illustrates this fact.

4 Collective axial oscillation

We have examined the axial oscillation at 2ωz under
higher resolution. This reveals the structure of a broad
asymmetric minimum in the electron number, accompa-
nied by a sharp resonance on the high frequency side
(Fig. 6). The asymmetry of the low-frequency component
arises from non-linearities in the trapping potential. We
have approximately modeled the line shape by assuming
an octupole contribution of strength c4 = 10−3 to the
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Fig. 7. Space charge effect in the non-collective and collective
oscillations. The given error bars are 10% of the resonance full
width. For the collective resonances they are of the order of
the symbol size.

quadrupole potential (c2 = 1) and numerically solving the
equation of motion. The dashed line in Figure 6 is not a fit
to the experimental data but a mere demonstration that
in principle the shape of the resonance can be understood.
More realistically one would have to take additional higher
order contributions into account.

Both resonances show different dependencies on the
number of trapped electrons: the broad, low frequency
resonance gets shifted to lower frequencies, as the num-
ber of electrons increases. The number is estimated from
the size of the shift when we use a simple model for the
space charge potential [20]: when we assume for the elec-
tron cloud a uniformly charged sphere of density n, the
shifted axial frequency can be written as

ω′z = ωz(1− α/3)1/2 (5)

where

α = ω2
p/ω

2
z (6)

with the plasma frequency

ωp
2 =

q2n

ε0m
· (7)

For small α the expected shift depends linear on the elec-
tron number as experimentally observed (Fig. 7). In con-
trast, the position of the sharp resonance remains invari-
ant. The positions of both resonances coincide at the same
frequency as the relative number of electrons goes to 0.
A shift of the axial resonance might also appear by im-
age charges induced in the trap electrodes. If in a simple
model [21] the trap is replaced by a conducting spherical
shell of radius a the image charge creates an electric field

Eimage =
nqar

(a2 − r2)2
· (8)

This field is superimposed to the traps field and conse-
quently shifts the electron oscillation frequencies. For the
axial frequency this shift amounts for small n to

∆ωz =
−nq2

2ma3
· (9)

Since our trap size is fairly large the calculated shift is
by about 2 orders of magnitude smaller than the space
charge shift and can be neglected. We conclude that the
broad resonance is the incoherent oscillation of the differ-
ent electrons in the cloud since the individual electrons
are subject to the space charge potential of their neigh-
bors while the sharp resonance represents the collective
oscillation (center-of-mass) of the whole electron cloud.
The observation of collective resonances in a trapped elec-
tron cloud has been reported earlier by Wineland and
Dehmelt [17]. In a Paul radio-frequency trap confining
atomic and molecular electrons they have also been ob-
served and investigated in detail by Alheit et al. [18].

In order to understand the appearance of the collec-
tive resonance in the axial motion we consider the motion
of the center of mass of the electron cloud in the Penning
trap in the presence of an additional rf-field of quadrupolar
geometry and include some damping mechanism, charac-
terized by a damping constant γ

MZ̈ + γŻ +Mωz
2Z = F0Z cosωt. (10)

Here M is the total mass of the electron cloud and F0 the
amplitude of the rf-field of frequency ω. Neglecting the
damping for a moment this equation can be rewritten as

Z̈ + ωz
2

[
1− q

ωz2
cosωt

]
Z = 0 (11)

q =
F0

M
ωz

2. (12)

We substitute ωt = 2τ and obtain

Z̈ +
(

2ωz
ω

)2 [
1− 4q

ωz2
cos(2τ)

]
Z = 0. (13)

This is a Mathieu differential equation of the form

Z̈ + [â− 2q̂ cos(2τ)]Z = 0 (14)

â =
4ωz2

ω2
(15)

q̂ =
8ωz2

ω2

F0

M
· (16)

The solutions are known to become unstable for â = n2:n
integer. For n = 1 it follows the observed center-of-mass
resonance at ω = 2ωz. The resonance appears, however,
only when the amplitude of the exciting rf-field exceeds a
critical value (Fig. 8). As pointed out in [18] the existence
of a critical voltage requires a finite damping constant γ.
From the electron number dependence of the critical volt-
age it was concluded in [18] that collisions of the electron
cloud with molecules of the rest gas are responsible for
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Fig. 8. The 2ωz resonance as a function of the rf-field ampli-
tude.
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Fig. 9. Threshold behavior of the collective oscillation. The
fitted function is y = y0+A(1−eV/Vthr), which gives a threshold
amplitude of Vthr = 0.18 ± 0.04 mV.

the damping mechanism. If we assume the same for our
case of trapped electrons we expect that the value of the
critical voltage amplitude compared to the corresponding
value for atomic ions reflects the difference in collisional
cross section for ions and electrons. In fact the measured
threshold amplitude here is about 0.2 V (Fig. 9) whereas
in case of H+

2 ions in a Paul trap it was of the order of
10 V [18].

5 Conclusion

The appearance of the individual resonance at frequency
2ωz is the well-known parametric resonance of an har-
monic oscillator at quadrupolar excitation. The existence
of a minimum amplitude to excite the center-of-mass res-
onance, however, makes it likely that this is an instability
occurring when the trapping parameter a of a Mathieu-
type equation for the axial motion under the influence of

Fig. 10. Motional resonance appearing near 2νz/3. The
dashed line is the calculated frequency from the measured
center-of-mass resonance at 2νz.

an exciting rf-field is the square of an integer n, as dis-
cussed above. From equation (15) follows that additional
resonances should also occur for ω = (2ωz/n), n = 2, 3, 4...
In fact we have observed the same behaviour at ω = ωz
(n = 2) where as in the case of the 2ωz resonance a shifted,
broad asymmetric resonance occurs due to the normal
dipolar excitation accompanied on the high frequency side
by a narrow line which required a threshold amplitude. A
search for frequencies at higher values of n in the axial os-
cillations, as they appear in a Paul trap [22] was difficult
because multiples of the magnetron frequency occur in the
same frequency range as the expected fractions of 2ωz. At
the high amplitudes of the rf-field required for excitation
of the fractional resonances the multiples of the magnetron
frequency become broad and tend to overshadow the frac-
tional resonances. Some marginal evidence, however, has
been obtained in some attempts.

Figure 10 shows an example where a weak resonance
of symmetric shape appears at 1/3 of the measured fre-
quency of the 2ωz center-of-mass resonance. Although no
convincing series of motional resonances at fractions of
2ωz can be reported our occasional observation of weak
minima in the stored electron number for different values
of n > 2 may be considered as support for the interpreta-
tion as parametric instabilities.

Our observations may be of some interest in mass spec-
trometry using Penning traps. Here the mass dependent
ion cyclotron frequencies are compared and values for the
mass difference or mass ratios are obtained. The cyclotron
frequency ωc can be measured directly by sideband exci-
tation at ω = ω′c +ωm or independent measurements of all
three fundamental oscillation frequencies ω′c, ωz, and ωm

using the relation [16]

ω2
c = ω′

2
c + ω2

z + ω2
m. (17)

This relation is independent of trap misalignements to first
order. When the frequencies are subject to space charge
shifts as in the case of large ion clouds, the observed fre-
quencies have to be corrected for these shifts. Using the
center-of-mass oscillation this space charge shift would be
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eliminated, increasing the precision of mass measurements
using large ion clouds. We have checked this by taking
the measured frequencies as they appear in Figure 4. The
measured sideband at ωc/2π appears at 122.0± 0.8 MHz.
From equation (17) we obtain 120.5± 0.4 MHz when we
take for ωz the individual axial frequency, while with the
center-of-mass resonance we get 121.2± 0.3 MHz in much
better agreement to the measured sideband.

Our experiment was supported by the Deutsche Forschungsge-
meinschaft. We thank S. Ananthamurthy for critically reading
the manuscript.
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